Self-attention recurrent network for saliency detection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Detection Using Saliency-based Attention

Most models of visual search, whether involving overt eye movements or covert shifts of attention, are based on the concept of a "saliency map", that is, an explicit two-dimensional map that encodes the saliency or conspicuity of objects in the visual environment. Competition among neurons in this map gives rise to a single winning location that corresponds to the next attended target. Inhibiti...

متن کامل

Saliency Detection with Recurrent Fully Convolutional Networks

• Employs three kind of low-level contrast features, including color, intensity and orientation, and the center prior knowledge to introduce saliency prior maps. • Train the RFCN with two stage training strategy, pre-training on the segmentation data set and fine-tuning on the saliency data set. The recurrent structure can incorporate the saliency prior maps into the CNNs with an end-to-end tra...

متن کامل

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

—Traditional saliency models usually adopt hand-crafted image features and human-designed mechanisms to calculate local or global contrast. In this paper, we propose a novel computational saliency model, i.e., deep spatial contextual long-term recurrent convolutional network (DSCLRCN) to predict where people looks in natural scenes. DSCLRCN first automatically learns saliency related local feat...

متن کامل

Hierarchical Recurrent Attention Network for Response Generation

We study multi-turn response generation in chatbots where a response is generated according to a conversation context. Existing work has modeled the hierarchy of the context, but does not pay enough attention to the fact that words and utterances in the context are differentially important. As a result, they may lose important information in context and generate irrelevant responses. We propose...

متن کامل

Deep Attention Recurrent Q-Network

A deep learning approach to reinforcement learning led to a general learner able to train on visual input to play a variety of arcade games at the human and superhuman levels. Its creators at the Google DeepMind’s team called the approach: Deep Q-Network (DQN). We present an extension of DQN by “soft” and “hard” attention mechanisms. Tests of the proposed Deep Attention Recurrent Q-Network (DAR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multimedia Tools and Applications

سال: 2018

ISSN: 1380-7501,1573-7721

DOI: 10.1007/s11042-018-6591-3